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Abstract 
 
Satellite imagery provides a unique vantage point for observing seasonal dynamics of the landscape that have 
implications for global change issues.  An objective evaluation of surface conditions may be performed using the 
normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration 
advanced very high resolution radiometer data.  NDVI data are typically very noisy, affected by a number of 
phenomena including cloud contamination, atmospheric perturbations, and variable illumination and viewing 
geometry, each of which usually reduces the NDVI.  This work describes a weighted least-squares linear regression 
approach to temporal NDVI smoothing to more efficiently reduce contamination in the NDVI signal.  This approach 
uses a moving window operating on temporal NDVI to calculate a regression line.  The window is moved one 
period at a time, resulting in a family of regression lines associated with each point; this family of lines is then 
averaged at each point and interpolated between points to provide a continuous temporal NDVI signal.  Also, since 
the factors that cause contamination usually serve to reduce NDVI values, the system applies a weighting factor that 
favors peak points over sloping or valley points.  A final operation assures that all peak NDVI values are retained.  
The resulting relationship between the smoothed curve and the original data is statistically based.  The smoothed 
data may be used to improve applications involving time-series NDVI data, such as land cover classification, 
seasonal vegetation characterization, and vegetation monitoring. 
 
 

INTRODUCTION 
 

Vegetation indices, computed from combinations of visible red and near-infrared spectral measurements, have been 
commonly used over the past 20 years for studying vegetation characteristics using images collected by remote 
sensing satellites.  The advantages of using these numerical transformations rather than strictly spectral observations 
include minimizing soil and other background effects, reducing data dimensionality, providing a degree of 
standardization for comparison, and enhancing the vegetation signal (Curran 1981) (Malingreau 1989) (Goward 
1989).  One of the more commonly used vegetation indices, the normalized difference vegetation index (NDVI), 
takes advantage of the reflective and absorptive characteristics of plants in the red and near-infrared portions of the 
electromagnetic spectrum and has been used in research on vegetation productivity.  The combination of the NDVI 
with the frequent temporal coverage and moderate spatial resolution of the advanced very high resolution radiometer 
(AVHRR) make this sensor well suited for regional- to global-scale studies on ecosystem dynamics.   
 
The AVHRR sensors are carried on weather satellites operated by the National Oceanic and Atmospheric 
Administration (NOAA).  The AVHRR records data with 1-km nominal spatial resolution and has daily global 
coverage.  The primary advantage of the AVHRR is its frequent temporal coverage over large geographic areas, 
which allows an opportunity for obtaining cloud-free coverage during important phenological stages of the land 
cover.  A number of studies directed toward analyzing global or continental-scale vegetation patterns using AVHRR 
data were initiated in the 1980's (Goward 1985, Justice 1985, Tucker 1985, Townshend 1987).  Many of these 
investigations incorporated multitemporal profiles (NDVI plotted against time) (Figure 1), frequently using these 



graphs as indicators of vegetation phenology.  A growing body of research indicates that the phenological behavior 
of different broad vegetation types can be observed, analyzed, and mapped using the NDVI profiles (Defries 1994) 
(Reed 1994). 
 
 

Figure 1. An example NDVI time series from AVHRR data. 

 
Several standard NDVI data sets have been produced to enable land cover studies using different temporal intervals.  
For example, selecting one NDVI value to represent the set of values obtained in a 2-week period produces a 
biweekly data set.  These standard data sets have both positive and negative characteristics for temporal vegetation 
studies.  Positive characteristics include (1) a relatively dense temporal coverage, (2) a relatively low data volume 
covering large areas, and (3) reduced cloud contamination.  Negative aspects of the biweekly data set are that (1) 
atmospheric corrections may be incomplete and (2) the biweekly composite period may be too long to determine 
phenological events in sufficient detail for some applications. 
 
Noise Reduction 
 
The NDVI data are often affected by a number of phenomena, including cloud contamination, atmospheric 
perturbations, and variable illumination and viewing geometry, all of which tend to reduce the NDVI value (Los 
1994).  Figure 1 illustrates the characteristics of some of these effects with the sharp, but temporary, reductions in 
NDVI values.  Although radiometric corrections of AVHRR data are routinely performed, there are still problems 
due to unreliable preflight calibration, no onboard calibration, and difficulty with in-flight calibration.  Atmospheric 
correction is performed only for Rayleigh scattering and for ozone.  Atmospheric aerosols and water vapor 
corrections are not performed because there is a lack of community agreement on feasibility stemming from 
difficulties presented by spatial and temporal variability.  Due to these negative effects, further processing---in 
effect, a smoothing---of the temporal NDVI signal is required.  Furthermore, the requirement to smooth large 



datasets (e.g., 17 years of continent-wide 10-day composites), as well as the desire to smooth the NDVI signal in 
near real-time, requires that the smoothing algorithm be computationally efficient. 
 
NDVI compositing 
 
Maximum value compositing is often performed on NDVI data sets to reduce both cloud contamination and data 
volume.  The first factor to consider in the compositing process is the length of the compositing period.  The choice 
of the period is usually based on the length of time necessary to obtain a composite with minimal cloud 
contamination and/or the amount of time necessary to observe meaningful changes in surface characteristics.  The 
compositing period for AVHRR data has generally been 10 or 14 days.  The data used in this study are biweekly or 
14-day composites. 
 
Maximum value NDVI compositing is performed by examining the NDVI pixel by pixel for each observation 
during the compositing period to determine the maximum value. The retention of the highest NDVI value reduces 
the number of cloud-contaminated pixels and favors near-nadir pixels (Holben 1986).  Although maximum value 
compositing increases data quality, data analysis remains affected by the residual effects of sub-pixel clouds, 
prolonged cloudiness, persistent haze, and other negative effects.  
 

BISE (Best Index Slope Extraction).  Viovy and colleagues (Viovy 1992) proposed a method of temporal 
profile extraction based on the slope of increasing or decreasing data values referred to as the “best index slope 
extraction”.  The method accepts a point if it has a higher value than the previous observation.  Where the NDVI 
value decreases, the decrease is only accepted if there is no point within the next n periods with a value greater than 
20 percent of the difference between the first low value and the previous high value.  This technique is dependent on 
both the 20 percent threshold and the predefined period of time (i.e., the n).  The resulting profiles tend to lose some 
of the nuances of the NDVI profile and, in some cases, appear to be insensitive to the timing of NDVI increases. 
 

Temporal Smoothing.  VanDijk and others (VanDijk 1987) applied six different smoothers to vegetation index 
data: polynomial, Fourier, mean, median, “4253H, twice,” and “3RSSH, twice.”  The shortcoming of the polynomial 
and Fourier smoothers is that they only determine the general shape of the curve, rather than pinpointing particular 
cycles.  The Fourier series smoother must also be rerun over the entire time series each time a new data point is 
added.  The running mean and median filters have the disadvantage (even when weighted) of altering the timing of 
local maxima and minima.    Combinations, or compound, filters can also be used for smoothing.  Velleman and 
Hoaglin (Velleman 1981) developed the  “4253H, twice,” and  “3RSSH, twice” filters.  The numbers of the 4253H 
refer to the span of the running median filter being run in each iteration, and the H refers to a hanning or weighting 
system for subsequent weighted mean filters.  Smoothed residuals are then added back in a re-roughing process, 
hence the term “twice.”  The “3RSSH, twice” smoother uses a running median of span 3, then re-smoothes 
repeatedly until the data no longer change. A re-roughing process is also used in this compound smoother.  The 
authors conclude that the “4253H, twice” smoother was the best of the above examples.  However, it appears that 
local maxima values are not always retained in the resulting smoothed profile.  The authors also declare that the 
inability of smoothing the endpoints of a profile limit the utility of the smoother for real-time monitoring 
applications.  Finally, the inherent computational inefficiency of median filters does not allow the implementation of 
real-time monitoring on large datasets. 
 
The work described herein addresses some of the drawbacks of the other approaches.  The system uses a weighted 
least-squares windowed linear regression approach to temporal NDVI smoothing.  The linear regression model is a 
well-understood statistical method that can be efficiently implemented to run on large sets of NDVI data.  The 
resulting smoothed curve has the further favorable characteristic that it is statistically bound to the original raw data 
points.   



 
 
 

WEIGHTED WINDOWED LINEAR REGRESSION 
 
To extract vegetation information from satellite data, the noise embedded in the signal must be removed.  This work 
reports on a technique for producing a smooth vegetation index curve using stable, robust, statistical methods as 
described below. 
 
Weighted linear regression 
 
Given a set of noisy observations, such as the temporal NDVI data for a particular pixel, we want to find a model 
that more succinctly describes the dataset (Press 1988) in order to more easily use it for further analysis.  Regression 
is a well-known, statistically sound technique for obtaining the parameters for such a model and has been studied 
extensively (e.g., (Larsen 1986), (Press 1988), (Rousseeuw 1987), (Walpole 1985), (Wilks 1963)). 
 
If we have a single independent variable x and a single dependent random variable Y, the data may then be 
represented by the pairs of observations {(xi, yi); i = 1, 2, …, n}.  If we assume that all of the means μY|xi lie on a 
straight line, then each yi can be described by the simple linear regression model  
 

,| iiixYi ExEY
i
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where the random error iE has a mean of zero.  Thus, each sample instance satisfies the equation  
 

,iii xy εβα ++=  
 
where iε is the value assumed by iE  when iY  takes on the value iy .  If we estimate α  by a  and β  by b , we get 
an estimated line  

bxay +=ˆ . 
Now each observation pair satisfies the relation 

iii ebxay ++=  

where the “residual” iii yye ˆ−=  describes the model error at the i th data point. 
 
For weights niwi ,,2,1, K=  defined for each data point, the method of the “least sum of weighted squares” finds 

estimates a  and b so as to minimize the sum of the weighted squared errors (SWSE), namely 
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To minimize SWSE, we find the partial derivatives with respect to both a  and b , and set them to 0: 
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Setting to 0 yields: 
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From equation 4 we have: 
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Substituting equation 6 into equation 5 and rearranging terms, we get 
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Notice that if we use a uniform weighting of 1 for each point, the expressions simplify to the more familiar 
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The weighted linear regression formulae are more appropriate for the purposes of the work presented here; therefore 
equations 6 and 7 are used. 
 
Thus we have simple and efficient expressions for solving the weighted linear regression problem.  In practice, we 
can efficiently compute 
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Outlier Detection 
 
As with any data collection and analysis task, occasionally the collected data will be faulty in some way, usually 
through noise in the collection system.  An outlier is an erroneous point that has an undue influence on the 
regression line.  An example series of points containing an outlier is shown in Figure 2. 
 
 

(a)                (b) 

Figure 2.  (a) A sample series of simulated data points containing an outlier (point 2).  The influence of the outlier 
point has a great effect on the calculated regression line. (b) The same series with the influential point removed 
before the regression line calculation. 

 
The regression line obtained when the outlier is included in the calculation does not adequately reflect the real trend 
of the data points.  When the regression line is calculated without the outlier point contributing to the calculation, the 
regression line more closely reflects the actual trend of the data. 
 
Determining when a point is an outlier has received considerable attention (Rousseeuw 1987).  The contaminating 
factors of the NDVI signal tend to lower the index's value in the y  direction (Defries 1995); this particular 
application has no points that will be unduly influential in the x  direction.   
 
The linear regression described above has a statistical basis in that the expected value of the sample data lies along 
the regression line bxay += .  If the nature of the noise corrupting the signal along the regression line is normally 

distributed, then the sum of the weighted squared errors given in equation 1 is 2χ  (Larsen 1986).  Therefore, we 

can use a simple outlier detection technique such as the 2χ  test.  In this test, we determine the existence of an 



outlier using the calculated SWSE, comparing it to the 2χ  with 2−n  degrees of freedom (for n  points 
contributing to the linear approximation) to see whether any of the temporal NDVI points are outliers in the y  
direction.  If it is determined that an outlier exists, we can examine each residual error to determine which point(s) 
are likely candidates for outliers.  We can then mask these outliers from a recalculation of the regression curve. 
 
Windowed regression 
 
The preceding analysis assumes, of course, that a linear relationship exists between the independent variable x  and 
the dependent observations iy .  Many relationships are not linear, however, such as the case with vegetation index 
derived from remotely sensed satellite imagery.  However, many relationships that are not entirely linear are still 
approximately linear over some interval of interest.  In fact any arbitrarily complex curve can be approximated by a 
piecewise linear curve through some window of a particular size.  Using non-overlapping windows will produce a 
piecewise linear curve. 
 
In this work, however, a smooth curve is required rather than a piecewise linear one, as shown in Figure 3. 

 
Figure 3.  The difference between the piecewise linear curve obtained using non-overlapping windows for the linear 
regression and the smooth curve obtained through overlapping windows. 
 
Therefore, the noisy signal is divided into a collection of overlapping windows.  By making each of these 
overlapping windows small enough, our assumption that the signal in each of these overlapping windows is 
approximately linear is valid.  By combining overlapping windows, we generate a smooth curve rather than a 
piecewise linear curve.   
 



Using overlapping windows, however, poses the problem of how the resulting regression lines should be combined.  
There are a number of options that could be used for the combination algorithm.  Since the contaminating factors of 
the NDVI signal tend to lower the index's value in the y  direction (Defries 1995), for each point we could use the 
regression line that produces the maximum y  value for a given x  position.  We found that this approach tended to 
yield widely variable results.  The y  values produced in this manner often were significantly higher than even the 
season peak point from the actual data.  While we want to bias the smoothed curve upward in order to counteract the 
contaminating agents, we do not want to overcompensate and produce NDVI results that exceed the season's peak 
point.   
 
Alternatively, we could compute a different regression line for each point, saving the line only where the point under 
consideration corresponds to the midpoint of the regression window.  This approach produced curves that closely 
adhered to the original data sample but were still noisy enough to require further smoothing. 
 
To facilitate the smoothing required by keeping each point's regression line, we took a combination of the lines for 
each point in a window.  We defined a combination window in addition to the regression window and produced a 
new set of linear coefficients as a combination of the coefficients associated with each line in the combination 
window.  For this combination, we tried using a median, a simple average, and an average weighted by a Gaussian 
kernel.  Of each of these techniques, we found that the simple average produced a curve that most closely matched 
the original data while producing a nicely smoothed curve. 
 
Weighting 
 
Since the contaminating factors (noise) in the NDVI signal tend to lower rather than raise the y -value, we favored 
the high y -values over their lower-valued counterparts.  In a three-point neighborhood, we can view each point as a 
local peak, a local valley, or a local sloping point, as shown in Figure 4.   
 

Figure 4.  Local peak, sloping points, and local valley points in a three-point neighborhood. 



The local peak points are likely closer to the actual data values than are the valley points, and for our application, we 
would like to interpolate rather than approximate these local peak points.  Therefore, we give them a relative 
weighting much higher than either the sloping points or the valley points.  The local valley points, on the other hand, 
are most likely the result of some corrupting factor in the data rather than an actual physical phenomenon.  
Therefore, we give these local valley points a relative weighting much lower than the other cases.  The sloping 
points are not as important as the local peak points, but are much more important than the local valley points.  Our 
analysis has led us to give the local peak points a weighting of 1.5, the local sloping points 0.5, and the local valley 
points 0.005.  The effect of this weighting scheme makes us favor the local peak points while effectively discounting 
the contribution of the local valley points. 
 
This manipulation of the weighting is done to fit our particular application's parameters.  But we are only modifying 
the weights on the series of points in the signal; the underlying regression technique is still firmly planted in rigorous 
statistical methods.  We can still indicate a confidence value for how well the smoothed curve represents the raw 
data; we can still locate outliers using our 2χ  test. 
 
Figure 5 illustrates the results of implementing the smoother on an NDVI time series in May 1998.  Note the large 
number of low NDVI values (depicted in yellow) that occur in western Washington, Oregon, and northern 
California due to atmospheric perturbations during this 14-day period.  The smoother effectively replaces these low 
values with higher NDVI that is more typical of the evergreen coniferous forests found in this area. 
 

APPLICATIONS 
 
Once the NDVI time series has been smoothed, the data used in many applications are less affected by atmospheric 
and sensor perturbations.  Such applications include land cover classification, seasonal characterization, and 
vegetation monitoring.  Land cover classifications based on unsmoothed, multitemporal satellite data have been 
performed for some time (Loveland 1991).  Operating on the smoothed data may reduce the number of pixels that 
are misclassified because of one or more noisy values.  Seasonal characterization includes the derivation of seasonal 
metrics such as onset and duration of the growing season (Reed 1994), (Defries 1994).  Such characterizations are 
usually based on identifying trend changes in NDVI values.  Reducing the number of spuriously low NDVI values 
caused by atmospheric contamination reduces the probability of identifying spurious starts of season.  Finally, since 
this technique allows smoothing data in near real-time, the NDVI data may be used in an improved monitoring 
system.  Even if there are contaminated data, the smoother is able to estimate what the true value would be on the 
basis of previous observations. 
 

SUMMARY 
 
We have developed a weighted least-squares approach to smoothing multitemporal NDVI data.  The result is an 
efficient, statistically based smoother that can be implemented in real-time, allowing refinement to particular 
smoothing applications by means of the regression and combination window parameters.  The smoother greatly 
reduces the effects of atmospheric and sensor perturbations that generally tend to lower NDVI values.  The resulting 
smoothed NDVI time series can be used to more effectively map land cover, identify phenological trends, and 
monitor vegetation, in particular through the development of seasonal metrics such as onset and duration of the 
growing season.  
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